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Abstract

In this work we address the problem of identifying 
and limiting the heaviest hitters in a sliding-window data 
stream. We propose the first, to our knowledge, exact (i.e., 
not approximate) algorithm which achieves O(1) with 
high probability time complexity in both update and query 
operations. Additionally, it tracks the first and last item 
of any itemset in the window in O(1) time complexity as 
well as the lightest hitters with no additional computational 
costs. These properties allow us to efficiently implement 
a mechanism to limit the heaviest hitters by evicting them 
from or not allowing them in the window. We describe 
the algorithms and data structure which implement 
this functionality, we explain how they can be used to 
accomplish the goal of limiting the heaviest hitters and 
perform experiments to produce quantitative results to 
support our theoretical arguments.

Keywords: Mining, Heaviest hitters, Data streams, Sliding 
window, On-Line algorithms.

1   Introduction

In this paper, we aim to combine a novel algorithm 
for identifying the heaviest hitters in a sliding-window 
data stream with the ability to track the items in that 
sliding window in order to implement the fair rate-limiting 
mechanism described in [1-2]. This results in a constant 
time algorithm which is able to fairly distribute the shared 
service resource to the incoming items.

The sliding-window data stream model is very similar 
to a traditional limited-size queue, used frequently in 
network routers to buffer packets while they await service. 
This is the motivating problem we used to implement 
and evaluate our algorithms and data structures. More 
generally, however, the problem of finding the heaviest 
hitters in a data stream, i.e., the problem of finding which 
category of items in a long succession of them are the most 
frequent ones, has a number of applications, some of them 
quite pervasive. Some applications are in financial data 
streams, where it is useful, for example, to know which 
stocks are showing the most mobility. Other applications 
include sensor networks (for example, helping an intrusion 
detection scheme [3]) and filtering sensed data, behaviour 

analysis on websites and trend tracking of hot topics (for 
example, accurately counting the hottest queries for caching 
[4]). 

The motivating application, as mentioned, is network 
traffic monitoring (and shaping) on Internet routers. Being 
able to tell at any moment in time which set of packets is the 
most frequent passing through a router (collectively referred 
to as a flow of packets) helps in both being able to tell what 
may be causing problems and subsequently resolving these 
problem in a “fair” manner towards those not contributing 
to the problem. In this paper, we specifically address this 
issue by implementing the Prince queue policy [1-2]. This 
policy has been shown to be able to successfully and fairly 
limit aggressive flows which send service requests, in our 
case packets, at a rate higher than the fair share they should 
request in order not to disadvantage other non-aggressive 
flows. To solve this problem we create a data structure and 
a set of associated algorithms which operate on it to solve 
the heaviest hitters problem on the network router queue. 
The basic heaviest hitters problem consists of a data stream 
where at each moment in time one item, which belongs 
to some itemset, arrives for processing. The goal is to be 
able to provide a list of the itemsets whose item counts are 
above a given θ threshold. Given the unbounded number 
of itemsets and length of the data stream, this cannot be 
achieved without unbounded memory. As a result, all of 
the proposed solutions for this problem have provided 
approximate results. 

We address a variant of the basic problem in this work 
which stems from the observation that only a section of 
the whole history of the data stream may be interesting. 
Usually, the most recent items are considered to be more 
important. This is one of the most common and arguably 
one of the most useful of these variations: finding the 
heaviest (and lightest) hitters in a sliding-window data 
stream. 

In the sliding window model, at each moment in 
time the maximum number of items which participate in 
a window over the data stream is constant. This window 
contains at most the Q most recent items. This scenario 
resembles the operation of a queue with an upper limit 
on its capacity. As items arrive to be processed they are 
inserted at the end of the queue and as items are processed 
they are removed from the front of the queue. 
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All the algorithms proposed for both the basic problem 
and the sliding window variation have in common the 
requirement that they be able to operate on-line. This 
entails being able to do only one pass over the data, i.e., 
each arriving item may be examined only once by the 
algorithm. This is usually called an update operation and 
the complexity of this operation must be constant time. 
Furthermore, querying for the heaviest hitters must also be 
as fast as possible, ideally proportional to the number k of 
the heaviest or lightest hitters that we request to be found. 

Our algorithm supports the ability: 
(1) To provide exact results in the query operation and at 

the same time maintain constant time update and query 
operations. 

(2) To provide not only the heaviest but also the lightest 
hitters in the sliding window with the same performance 
and no overhead.
In the following sections we first describe the related 

work (Section 2) and then move on to describe the proposed 
abstract data type of HL-HITTERS and the building blocks 
out of which it is constructed (Section 3). We then describe 
the data structure itself and the algorithms which implement 
the HL-HITTERS operations. Subsequently, we present 
the results of the experimental evaluation of the proposed 
solution (Section 4) and discuss its results (Section 5). 
Finally, we propose some interesting possible extensions to 
this work (Section 6). 

2   Related Work

This work merges the results from two separate fields 
to achieve our goals. The first field relates to the fair 
and balanced distribution of resources (and in this case 
specifically network router resources) to competing entities. 
In this field, network congestion has been described game-
theoretically by Nagle [5] and the solution put forth used 
a market wherein the rules of the game would lead to the 
optimal strategy for the individual entities also being the 
optimal solution for the system. In a later work, Shenker 
[6] describes the relation between the selfish entities and 
the switch service mechanisms and proposes a method of 
guaranteeing efficient and fair operating points. Since then, 
the coordination of Internet entities has been modelled 
through various game definitions [7-8]. We use the model 
proposed by [1-2] in order to achieve the fair and balanced 
distribution of resources. 

The second field relates to the heaviest hitters problem 
and its solution in a sliding-window data stream context. 
This problem was first posed by Moore in 1980 and together 
with Boyer they presented the solution (in [9]) for finding 
the majority hitter in the basic version of the problem, i.e., 
non-window-based data streams. This problem was studied 
and approximate solutions were proposed much later and 

concurrently by [10-11]. Since, a significant body of work 
has been performed on both the basic problem and on its 
numerous variations. A good presentation of this work can 
be found in [12-13].

This work builds on our previous effort [14] to 
implement an efficient heaviest hitters tracking algorithm 
by extending the data structure to handle the tracking of 
individual items in the queue, the ability to add a new 
tracked item and remove one in constant time. We have also 
performed a more extensive evaluation of the performance 
of the augmented data structure, improved on the previously 
reported performance achieved and verified the fairness of 
the rate-limiting algorithm. 

3   Proposed Abstract Data Type

In order to provide an accurate description of our 
algorithm and the accompanying data structure we describe 
here its interface. The abstract data type which we define 
supports the operations shown in Table 1. All the operations 
in our HL-HITTERS implementation have constant time 
complexity.

Table 1 The HL-HITTERS Abstract Data Type

Operation Input Output Description
Initialize - - Initializes the ADT
Append Item - Records a new item

into the counts 
Expire Item - Removes an item

from the counts 
QueryHeaviest k: Int Array[k] Gets the heaviest-k

ItemSets
QueryLightest k: Int Array[k] Gets the lightest-k

ItemSets
GetOldestItem ItemSet Item Finds oldest item
GetNewestItem ItemSet Item Finds newest item

3.1 Building Blocks
To implement the data structure we use common basic 

building blocks. More specifically, we use exactly one 
array of fixed size, multiple doubly linked lists and one 
hash table. With each of these data structures we only use 
the constant time operations. Thus, for example, we never 
iterate over the nodes of the linked list to reach a sought 
entry, rather we keep references to the node itself. We will 
proceed by describing exactly which operations will be 
used on each data structure and its time complexity. 
3.1.1 Array

The array must be of size Q, the same as the size of the 
window, and its size remains constant during the execution 
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of the algorithm. We only perform the operations Get 
and Set on the array, which execute in constant time. The 
elements of the array are never iterated over. 

In the implementation for our experiments we used 
the standard vector provided by the C++ STL (Standard 
Template Library) std::vector class. 
3.1.2 Doubly-Linked List

The linked lists start out empty and as the algorithm 
executes nodes are added and removed. We only use the 
Head and Tail fields of the doubly-linked list to access 
the respective nodes in constant time. As far as the inserts 
and deletes are concerned, they are always executed with 
respect to a reference node and as such are constant time 
as well. To be more specific, InsertBefore and InsertAfter 
require two arguments: the new node to insert and a 
reference node before or after which to insert the new node. 
Similarly, Delete requires a direct reference to the node 
to delete. Furthermore, the maximum number of nodes 
is known a priori to be Q, and thus we can eliminate the 
overhead of dynamic memory allocation for the nodes by 
using a preallocated node pool. 

In the implementation for our experiments we used 
the a custom doubly-linked list implemented by using the 
Boost intrusive list [15] and a simple pool allocator to avoid 
all list node memory allocations and deallocations during 
the operation of the algorithm. 
3.1.3 Hash-Table

In the HL-HITTERS data structure the id of each 
itemset with at least one item in the window, is stored in 
a dynamic dictionary. A hash-table is used to implement 
the dynamic dictionary. Hashing is commonly assumed 
to require O(1) amortized time for the operations Get, Set 
and Delete or at least for one of these operations. However, 
there are at least two examples of hashing schemes which 
achieve worst case O(1) time with high probability (whp): 
the early work of [16] and the recent algorithm of [17]. 
Consequently, we can assume that an efficient, O(1) 
hashing scheme can be used in the HL-HITTERS data 
structure. 

There is an additional reason why we can assume 
O(1) time for our hashing scheme. Given that our original 
motivation were router queues, we can assume that the 
maximum size of a window does not typically exceed 1000 
items (packets in this case). The most common values are 
a few hundred items. This fact admits us the luxury to run 
the hashing data structure with a very low load factor. For 
example, even a hash table with 1 million entries would not 
be a significant cost for a modern router. 

Consider the following naive approach with chained 
hashing using a uniform hashing function with n hash table 
entries, m << n = cm packets, and k, the constant upper 
bound on the number of collisions. The probability ρ of 

experiencing more than k collisions in any of the n table 
entries is 

  (1)

For n = 106, m = 103 and k = 10 the first inequality 
gives that ρ ≤ 2.38 × 10-35. Consider now a router which 
serves 109 packets per second (a bit unrealistic today but 
allows for future enhancements) and operates continuously 
for 20 years. This router can serve not more than Z = 109 
× 60 × 60 × 24 × 366 × 20 ≤ 6.34 × 1017 packets during 
its lifetime. Even if we consider the case where every one 
of these Z packets is unique, i.e., the router never receives 
two packets from the same flow and thus maximizes the 
potential for collisions to appear, the probability of a “bad” 
collision event occurring during its lifetime is ρ * Z ≤ 2.38 
× 10-35 × 6.34 × 1017 = 1.51 × 10-17. This probability is 
thus practically negligible. Consequently, even the naive 
approach seems to meet the requirements for a router. In 
addition to this naive implementation there are many, very 
efficient, hashing schemes which will perform much better.

Unfortunately, however, in practice a standard cuckoo 
hash table occasionally experiences insertion operations 
that take significantly more time than the average. The 
question of which of the published hashing schemes offers 
the optimal trade-off between space redundancy and worst 
case bounds could be an interesting problem to investigate. 
However, for our purposes, any lightweight hashing 
scheme will be sufficient if sufficient memory is provided. 
Moreover, for our main motivation application, special 
hardware-based memory is available in many routers which 
can achieve de-amortized O(1) performance [18].

Based on the above arguments, we plausibly assume 
that we can employ an efficient O(1) whp hashing 
scheme for our data structure in a modern network router. 
Additionally, we believe that the arguments used for the 
router case can apply to other applications of window-based 
heaviest and lightest hitter problems. In the implementation 
used for the experiments of this work, we used chained 
hashing provided by the C++ boost::unordered_map class [19].

3.2 Data Structure
We now proceed to describe how the data structure is 

composed out of the basic building blocks. An overview 
of the layout used is presented in Figure 1. It should be 
noted that the Queue is not part of the HL-HITTERS data 
structure itself but is displayed in order to illustrate the 
pointers to the items it contains stored in the data structure. 

Before proceeding with the description of the data 
structure further, we need to describe two types of simple 
record-like structures which are used: 
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 y CountNode, which is the type of the list node used 
in the doubly-linked list. The data stored (besides the 
Previous and Next fields) is an integer named Count, the 
identifier of an ItemSet named ItemSet and a linked list of 
references to items in the queue named QItems. 
 y CountRange, which has two fields, named First and 
Last, both of which are references to a doubly linked list 
node of type CountNode. This structure is meant to store 
the endpoints of a sub-range of the Counts DLList. To 
support this, it supports two simple operations: Insert (a 
new node in range) and Remove an existing node from 
the range. Both are O(1) operations as they manipulate 
only the First and Last fields and do not iterate over the 
nodes in the range.

Layout of the Data Structure: Itemsets that have no 
items in the window, i.e., a count of zero, will not have 
any entries in any of the data structures. Conversely, each 
itemset which has at least one item in the window, i.e., a 
count ≥ 1, will have one entry in the ItemSets HashTable. 
Additionally, for each itemset, there will exist one node of 
type CountNode in the Counts DLList, with a Count field 
corresponding to its exact count of items in the window and 
a QItems field containing pointers to its items in the queue. 
Finally, for each group of itemsets which have the same 
item count there will be one entry in the Ranges Array, 
in the position of the array which is equal to the itemset 
group’s count.

3.3 Algorithms
We now present the operations which are supported 

by the data structure using pseudo-code and describe their 
operation and computational complexity in detail. 

3.3.1 Initialization
The Initialize operation is shown in Algorithm 1. 

While its functionality is simply to initialize the ItemSets 
hash table, the Counts doubly linked lists and the Ranges 
array, it is useful nevertheless to illustrate that initialization 
is straightforward and that only memory allocations are 
performed. For the DLList, the allocation of the node pool 
is also performed here.

Algorithm 1: The Initialize operation 
1: procedure Initialize
2: ItemSets ← new HashTable        
3: Counts ← new DLList        
4: Ranges ← new Array        
5: end procedure

3.3.2 Append
In Algorithm 2 we present the Append operation. It 

receives the item which is to be appended as a parameter. 
The itemset of the item is looked up in the ItemSets hash 
table. If it is found, then the itemset is already being 
counted, i.e., has other items in the window, and therefore 
its count must be increased by one. If not, then it is a new 
itemset, i.e., it has no other items in the window, and thus 
must be recorded with a count of one and a pointer to item 
in the queue has to be stored.

For the case of being already counted, only the Counts 
and the Ranges structures will be modified. The idea is to 
move the count node corresponding to the itemset to the 
position in the Counts linked list where it will be the first 
linked list node with the new count. In order to do this, the 
count node of the itemset is looked up via the Get operation 

Figure 1 The ADT’s Structure
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on the hash table and a reference to it is stored in cn. 
Before removing the cn node from the list, the position in 
the linked list where it will be moved to is recorded in cn′, 
with help from the Ranges Last field. This will point to the 
immediately next linked list node after the last node with 
the old count. Subsequently, the count node cn is removed 
from the linked list and the corresponding Ranges count 
range entry is updated with the Remove operation. Finally, 
the cn node is inserted in the linked list before the cn′ node, 
the new Ranges count node entry is updated to include it 
and a pointer to the item in the queue is pushed at the end 
of the QItems queue (in O(1)).

For the case of not being already counted, all of 
the structures will be modified. A new count node will 
be created to hold the count for the new itemset. Since 
allocating a new object on the heap may not be O(1), we 
can take advantage of the fact that the maximum number 
of itemsets is Q, as explained in Section 3.1.2, and as such 
we can just take out a preallocated count node out of a 
preallocated pool in O(1). A new DLList is created to store 
the pointers to items in the queue which belong to this 
itemset and is used in the new count node. This node is then 
inserted in the position of the Counts linked list indicated 
by the First field in the first count range entry of the Ranges 
array and then it is recoded in the same count range entry. 
Finally, the itemset hash table is updated by creating an 
entry that maps the new itemset to the count node which 
was created previously using the Set operation. 

3.3.3 Expire
In Algorithm 3 we present the Expire operation. It 

receives the item which is to be removed as a parameter. 
The item’s itemset is looked up in the ItemSets hash table 
via the Get operation and the reference to the count node in 
the Counts linked list representing it is stored in cn. 

Since the count of the itemset will be decremented by 
one, we need to move the cn count node to the position in 
the Counts linked list where it will be the first linked list 
node with the new (old minus one) count. Similarly to the 
Append operation, before removing the cn node from the 
list, the position in the linked list where it will be moved 
to is recorded in cn′, with help from the Ranges First field. 
This will point to the immediately previous linked list 
node after the first node with the old count. Subsequently, 
the count node cn is removed from the linked list and the 
corresponding Ranges count range entry is updated with 
the Remove operation. The first item in the count node’s 
QItems queue is popped and the count node Count field is 
decremented by one. If the count has not reached zero a 
check is made to see whether the position to be moved is 
valid: 

 y The reference in cn′ must be not null, which would 
indicate that the previous count range was the first in the 
linked list, and 
 y The count of the cn′ referenced node must be the same as 
the new count of the moving node, i.e., the target count 
node must belong to the correct count range.

If this check succeeds, the new corresponding Ranges 
count range entry is fetched with the Get operation. Its First 
field is set as the new cn′′ insertion position. Afterwards the 
moving node is inserted there. If the check fails, then there 
is no CountRange entry in the Ranges array corresponding 
to the new count and the count node is inserted right where 
the original cn′ reference pointed to. 

In both cases, the moving count node will be inserted 
in the Ranges entry with the new count using the Insert 
operation. 

If the new count after decrementing by one is zero, 
the count node is deleted. Before doing that, the count 
node’s QItems DLList is also deleted and returned to the 
preallocated pool. If a preallocated pool was used it is 
returned to the pool in O(1). Finally, the itemset hash table 
is updated by deleting the entry that maps the itemset to the 
count node which was previously deleted. 
3.3.4 Query

In Algorithm 4 we present the QueryHeaviest and 
the QueryLightest operations simultaneously. The basic 
algorithm is the same; only the start of the iteration and its 
direction is different. In the algorithm, the left side of the 
↔ symbol corresponds to the QueryHeaviest operation 
while the right side to the QueryLightest operation. 

Algorithm 2: The Append operation 
1: procedure Append(item: ITEM)        
2: itemset ← item.GetItemSet()        
3: cn ← cn′← null        
4: if itemset ϵ ItemSets then        
5: cn ← ItemSets.Get(key:itemset)        
6: cn′← Ranges.Get(index:cn.Count).Last.Next        
7: Ranges.Remove(node:cn)        
8: Counts.Remove(node:cn)        
9: cn.Count ← cn.Count + 1        
10: cn.QItems.Push(item)        
11: Counts.InsertBefore(before:cn′, ins:cn)        
12: Ranges.Insert(node:cn)        
13: else        
14: qi ← new DLLIST        
15: qi.Push(item)        
16: cn←new
       COUNTNODE (ItemSet:itemset, Count:1,QItems:qi)
17: Counts.InsertBefore(before:Counts.Head, ins:cn)
18: Ranges.Insert(node:cn)        
19: ItemSets.Set(key:itemset, value:cn)        
20: end if        
21: end procedure
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The algorithm receives the threshold k as a parameter. 
Initially, a new results array of size k is created to hold the 
results. In some cases, there may be less than k itemsets 
available, therefore a number of positions at the end of the 
array will have null entries. 

The count node reference cn is set to point to the last (for 
QueryHeaviest) or the first (for QueryLightest) node in the 
Counts linked list via its Head or Tail fields. Afterwards, 
an iteration is performed up to k times. In each step, the 
current itemset stored in the node referenced by cn is stored 
in the current (the i-th) index of the array. Finally, the result 
is returned. 

The whole operation makes up to k iterations, at each 
one adding a different itemset to the result. This makes this 
operation have a time complexity of O(k) and as such is 
constant time as well. The operation of the query algorithm 
can easily be extended without changing the computational 
complexity to also return the actual count of each itemset 

along with each itemset. In addition it is possible instead of 
specifying a k parameter to return all the itemsets with the 
highest/lowest count. To implement this, retrieve the Tail/
Head count node of Counts, get the highest/lowest count, 
access the Ranges entry corresponding to that count and get 
the range of count nodes between the First and Last fields 
with the max/min count. This algorithm’s computational 
complexity will depend on the number of itemsets which 
will be the max/min count. As it is possible to have Q 
itemsets each with a count of one, this algorithm will have 
a worst case complexity of O(Q). However, in practice in 
many applications this will seldom be the case. Another 
extension would be to return the heaviest-θ/lightest-θ 
hitters, where θ is relative, expressed as a proportion 
of the window size (e.g., θ = 10%). However, here the 
QueryHeaviest and the QueryLightest operations will 
have different complexities. Since there is an upper bound 
on the number of itemsets which can have a frequency 
more than or equal to θ equal to 1∕θ, one can just execute 
QueryHeaviest with k = 1∕θ and the complexity will be 
as originally O(k). However, no such bound exists for the 
QueryLightest case, and therefore its worst case complexity 
will be O(Q). Finally, if one is willing to accept an O(Q) 
worst case complexity it is possible to create cumulative 
versions of both the original and the relative version of the 
query operations, where the k or θ parameters denote the 
cumulative count or proportion of the window. This would 
return the first itemset whose counts together add up to the 
specified threshold. 
3.3.5 GetItem

In Algorithm 5 we present the GetOldestItem and 
the GetNewestItem operations simultaneously. The basic 
algorithm is the same; only the retrieved end of a queue is 
different. In the algorithm, the left side of the ↔ symbol 
corresponds to the GetOldestItem operation while the right 
side to the GetNewestItem operation. 

The algorithm receives the itemset of which the oldest 
or newest item in the queue is to be found. Initially, the 
count node corresponding to the itemset is retrieved from 
the ItemSets hash table. Subsequently, the QItems linked list 
in the count node is accessed and depending on whether the 
oldest or newest item in the queue is requested, the front or 
back item in the queue is returned. 

Since no iterations are performed and since only the 
first or last item of the linked list QItems is accessed, these 
operations are performed in O(1).

Algorithm 3: The Expire operation 
1:procedure Expire(item: ITEM)
2: itemset ← item.GetItemSet()
3: cn′′← null
4: cn ← ItemSets.Get(key:itemset)
5: cn′← Ranges.Get(index:cn.Count).First.Previous
6: Ranges.Remove(node:cn)
7: Counts.Remove(node:cn)
8: cn.QItems.Pop(item)
9: cn.Count ← cn.Count - 1  
10: if cn.Count ≥ 1 then
11: if cn′≠null and cn′.Count = cn.Count then
12:   cn′′← Ranges.Get(index:cn′.Count).First
13:   Counts.InsertBefore(before:cn′′, ins:cn)
14: else        
15:   Counts.InsertAfter(after:cn′, ins:cn)
16: end if        
17: Ranges.Insert(node:cn)        
18: else        
19: delete cn.QItems        
20: delete cn        
21: ItemSets.Delete(key:itemset)        
22: end if        
23:end procedure

Algorithm 4: Query Heaviest↔ Lightest operation 
1:function QueryHeaviest(k: INTEGER)        
2: results ← newARRAY[k]        
3: cn ←Counts.Tail ↔Counts.Head        
4: i ← 1        
5: while i ≤ k and cn ≠ null do        
6: results[i] ← cn.ItemSet        
7: cn ← cn.Previous ↔cn.Next        
8: i ← i+1        
9: end while        
10: return results        
11:end function

Algorithm 5: Get Oldest ↔ Newest Item operation 
1:function GetOldestItem(itemset: ITEMSET)
2: cn ← ItemSets.Get(key:itemset)
3: item ← cn.QItems.Front() ↔ cn.QItems.Back()
4: return item
5:end function
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3.4 Space Complexity
The space complexity of the HL-HITTERS data 

structure can be fully derived and is exclusively dependent 
on the maximum window size Q. The ItemSets hash table 
contains a maximum of Q entries, the Ranges array has a 
constant size of Q entries and the Counts doubly linked list 
contains a maximum of Q count nodes. Furthermore, each 
node in the doubly linked list Counts, contains QItems, a 
linked list of pointers to items in the queue. This linked list 
uses a pool of preallocated nodes which is shared between 
all the Counts nodes. Since there can only at most Q items 
in queue, the preallocated pool of QItems nodes also has a 
size of Q. It follows that the space complexity of the whole 
HL-HITTERS data structure is O(Q). 

4   Results

It is clear from the previous analysis that the 
computational complexity of the HL-HITTERS algorithms 
presented is overall constant time whp. However, this 
does not guarantee an acceptable level of performance 
if in practice the constant time required is too high. 
We have created a router-like scenario, and have 
performed experiments to gauge the actual performance 
of the proposed algorithms. We have to note that, to our 
knowledge, there exists no other algorithm for calculating 
the heaviest-k hitters exactly, which also provides close 
to constant time performance. Therefore, we have 
implemented a naive but efficient as far as possible 
algorithm to find the heaviest-k hitter. This algorithm, each 
time the heaviest hitter is requested, creates a hash-table, 
and records within it the counts for each itemset. As it does 
this, it keeps track of the running heaviest hitter. However, 
this algorithm has an O(Qlogk) time complexity, due to the 
partial (k-largest) sort needed to find the heaviest-k hitters. 
Furthermore, in the experiments performed, we restricted 
ourselves to finding the top heaviest hitter only, i.e., k = 1, 
in order not to significantly disadvantage the direct counting 
algorithm. For reference, the computational complexity of 
the operations implemented by the direct counting and the 
HL-HITTERS algorithm is presented in Table 2. 

Table 2 Computational Complexity

Operation Direct counting HL-Hitters
Initialize O(Q) O(Q) 
Append O(1) O(1) 
Expire O(1) O(1) 

QueryHeaviest O(Qlogk) O(1) 
QueryLightest O(Qlogk) O(1) 
GetOldestItem O(1) O(1) 
GetNewestItem O(1) O(1) 

4.1 Experimental Scenarios
The experimental evaluation of our implementation 

is performed in two distinct scenarios. The first scenario 
is geared towards evaluating the performance of HL-
HITTERS when the queue is full but experiences no 
dropped packets, i.e., the rate of serving packets from the 
end of the queue is the same as the rate of arriving packets 
at the beginning of the queue. Furthermore, this scenario 
seeks to evaluate how much impact querying to find the 
heaviest hitter has when it is performed every time a new 
packet arrives at the queue, since this is what would happen 
in a real application. Finally, it seeks to measure the impact 
of tracking the packets which belong to each flow within 
the queue. This ability will permit the implementation of 
the Prince policy in the second scenario. 

The second scenario aims to measure both the 
performance and the efficiency of the Prince policy in 
contrast to a simple FIFO (DropTail) policy when the 
queue is full and experiences dropped packets, i.e., the rate 
of serving packets from the end of the queue is higher than 
the rate of arriving packets at the beginning of the queue. 
In this scenario, we use two groups of flows, normal and 
aggressive. The normal flows, which constitute 90% of the 
total number of flows never send packets at a rate higher 
than their fair share while the aggressive flows (10% of 
total flows) always exceed their fair share (within a range of 
different amounts). As a result, the queue is overflown and 
needs to drop packets. To compare performance, the Prince 
policy is implemented by both the naive direct counting 
algorithm and HL-HITTERS. We measure the time taken 
to service packets as well as how fairly the policies manage 
to limit the aggressive flows while not disadvantaging the 
normal flows. 

4.2 Experiment Setup
The implementation has been performed using C++, 

with standard C++ versions of the building blocks, as 
described in Section 3.1. We used the G++ compiler with 
all the optimizations enabled (-Ofast) for our specific 
architecture. The experiments were executed on an 
Intel Quad Core Q9300 processor with 4 GB of main 
memory, using one dedicated core for the execution of 
the experiments. The operating system used was Arch 
Linux, with the 3.0.1 version kernel. For each result point 
10 identical sequential executions of the experiment were 
performed to remove any bias. 

5   Discussion

A selected but representative and indicative of the 
worst case performance subset of the experimental results 
are presented here. The source code used to perform the 
experiments will be available on-line. 
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5.1 Scenario 1
The results obtained for the first scenario are 

summarized in Figure 2 where the performance of the 
direct counting algorithm is compared to the HL-HITTERS 
algorithm. When counting only, i.e., just keeping track 
of the count of packets of each flow in the queue the 
two algorithms perform similarly, whether they also 
track the positions of the packets in the queue or not. 
This performance is consistent with the theoretical O(1) 
complexity given in Table 2 for the Append and Expire 
operations. However, when querying to find the heaviest 
hitter (k = 1) is introduced (counting needs to be performed 
as well since without it querying is not possible), the results 
reflect the O(Q) complexity of direct counting and the O(1) 
complexity of HL-HITTERS. It is noteworthy to examine 
the absolute numbers as well. The HL-HITTERS algorithm 
has a maximum processing time per packet of 0.25 μs. This 
means that despite using general purpose building blocks 
and no hardware-based content addressable memory or 
specialized CPUs, we can process at least 4 million packets 
per second using our implementation. According to [20] IP 
packet sizes vary between 40 bytes and 1,500 bytes, with 
strong polarization tendencies. Given those values, we can 
achieve a throughput between 1.2 Gbit/sec and 48 Gbit/
sec. We stress the fact that this performance is achievable 
without any specialized hardware as would typically exist 
in an Internet router. Furthermore, performance profiling 
has shown that approximately 50% of the processing time 
is spent on the hash-table operations. Since these would 
heavily benefit from optimizations on a hardware router, 
we are confident that significantly higher performance is 
attainable under such conditions. 

5.2 Scenario 2
The results generated from the experiments in the 

second scenario are displayed in Figures 3 and 4. Figure 3 
shows the results of the comparison between a simple FIFO 
DropTail policy (with no packet tracking) and the HL-
HITTERS and direct counting algorithms implementing the 
Prince policy with packet tracking. The simple FIFO policy 
is the most performant and is not significantly affected 
by the increase in total sending rate. The direct counting 
algorithm slows down linearly with the increase in sending 
rate and scales badly as the queue size used increases. The 
loss of performance due to sending rate increase is expected 
since the QueryHeaviest operation is executed analogously 
more as well. However, the bad scaling in relation to the 
queue size leads to unusable performance for a router. 
Finally, the HL-HITTERS algorithm also slows down as 
the sending rate increases, at a much lower rate, and scales 
very well even when the size of the queue is increased. The 
absolute numbers show that the HL-HITTERS algorithm 
has a maximum processing time per packet of 0.45 μs when 
implementing Prince, which as described in the previous 
paragraph, would accordingly lead to a throughput between 
0.7 Gbit/sec and 26 Gbit/sec. 

Figure 4 shows the results of the comparison between 
a simple FIFO DropTail policy (with no packet tracking) 
and the HL-HITTERS algorithm implementing the Prince 
policy with packet tracking. These results show that 
although the FIFO policy is very fast, as seen in Figure 3, 
it is not able to limit the aggressive players effectively. As 
the sending rate of the aggressive players increases and the 
total sending rate as a result increases (since the sending 
rate of the normal flows is constant) the aggressive players 
manage to obtain a much higher portion of throughput in 

Figure 2 Scenario 1
Note. Performance of HL-HITTERS vs. direct counting for different Q queue lengths and grouped based on operation performed (counting or counting + querying) 
and on whether the packet positions in the queue are tracked. Measured in mean processing time per packet (shown in μs). The maximum time taken by HL-HIT-
TERS is 0.25 μs.
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respect to the fair share that they should get. For example, 
when the aggressive players send 10 times faster than the 
normal players the total sending rate becomes 190% of 
the service rate and the aggressive players get more than 
500% of the fair share while the rest of the 90% of the 
flows, the normal flows, all receive 50% of the fair share. In 
contrast, using the Prince policy, the aggressive flows only 
manage to get 143% of the fair share and as they increase 
their sending rate they make themselves clearer targets 
for limiting and are limited even more effectively. At the 
same time, the lowest share of throughput the normal flows 
receive is 95% of the fair share. 

6   Conclusion

Our work on the problem of the heaviest-k and 
lightest-k hitters in a sliding-window data stream has 
resulted in a data structure and an efficient set of algorithms 
for its operations. These in tandem allow us to achieve 

constant time updates and queries. Building on this feature, 
we implement the Prince policy, an effective rate-limiting 
mechanism, on a simulated router queue and show that 
it is possible to achieve both a highly performance and 
extremely fair rate-limiter on a router queue. We have also 
shown that the performance achieved is high enough in 
absolute numbers to be used in practical applications. We 
have attempted to maximize performance on a standard 
PC while at the same time have found that using a fairly 
standard component in hardware routers can potentially 
double performance. 

An interesting idea would be to extend this mechanism 
to incorporate the size of the packets as well, not only their 
number. This would allow us to make decisions based on 
the quantity of data that an itemset is responsible for, rather 
than how many items it is generating. Another direction 
would be to use multiple HL-HITTERS structures in a 
queue in parallel, each monitoring a different length of 
history. This would allow monitoring not only the highest 
hitters currently in the queue but also in longer periods of 
time. 
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